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Abstract

The objective of this study is to develop an approach

that would assign patients to aeromedical evacuation air-

craft and route each aircraft to a single CONUS airport.

The goal is to minimize total patient wait time.

A heuristic algorithm is developed which exploits the

structure of the problem. The first subproblem solved is

the assignmen'c of aircraft to airports. This subproblem is

solved using integer programming and the results are input

into the second subproblem. The second subproblem is the

patient to aircraft assignment problem. This subproblem

minimizes patient wait time and is solved using network flow

programming. The two subproblems are linked into one algo-

rithm and solved iteratively until termination criteria are

met.

The algorithm is tested on three data sets. The re-

sults indicate that the algorithm is an efficient method for

scheduling patients and routing aircraft, although

optimality is not gzaranteed.

vii



PATIENT SC7EDULING AND AIRCRAFT ROUTING

FOR STRATEGIC AERCMDICAL EVACUATION

1. INTRODUCTION

A critical task during periods of war is the

aeromedical evacuation of injured soldiers from the war

zone. The morale of the troops, and the morale of the

nation, is influenced by the ability to get the wounded back

to the United States quickly.

The policy of the Department of Defense is to move the

casualties by aircraft. The responsibility for the aero-

medical evacuation mission falls to the U.S. Air Force's Air

Mobility Command (AMC).

1.1 Background

Air Mobility Command is responsible for providing a

worldwide aeromedical evacuation system for the United

States Armed Forces (22:3). The system provides for airlift

within the continental U.S. (CONUS), between theaters of

operation, and within each theater. Within the theater of

operation, medical resources are distributed among the

services according to functional levels called echelons.

1i
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Higher echelons are identified by an increasing level

of medical care for the wounded soldier. The first echelon

(1E) is located along the line of contact with the enemy

where only limited care is available. The wounded soldier

is moved by foot, ground, or air transportation to the

second echelon (2E). The second echelon is a holding area

responsible for emergency/urgent casualty care. If soldiers

cannot be returned to duty within a specified period of

time, they move to the third echelon (3E). The time period

and other specifics of the lE and 2E varylbecause they are

the responsibility of the soldier's •arent service (Army,

Air Force, Navy/Marines). The parent sertices are also

responsible for patient movement from 2E to 3E; however, the

Air Force may move patients between these levels if aircraft

are available and conditions permit.

The patient becomes the responsibility of the Aero-

medical Evacuation System at the third ec felon. The 3E is

further back from the combat zone than lE and 2E and pro-

vides more sophisticated medical care. If patients cannot

be returned to duty within a specified period of time (a

longer time period than when at 1E and 2E), they will be

evacuated to the fourth echelon (4E). The 4E is a level

that is removed from the combat zone in an area called the

communications zone (CCMMZ). The COMMZ contains "lines of

communication, establishments for supply and evacuation, and
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other agencies 'required for the immediate support and main-

tenance of all field agencies" (22:4). COMMZ also provides

the connecting link between the combat zone and the CONUS.

Transportation between 3E and 4E is the responsibility of

the Air Force and is generally performed by C-130 aircraft,

although C-9 and C-141 aircraft may also be used. Each

aircraft has dedicated medical equipment and medical person-

nel on board. From the 4E level, the patient is either

returned to duty or evacuated to the United States. Under

current plans, movement to the CONUS will be performed by

C-141 aircraft. Once in the CONUS, the patient is moved by

C-9 or ground transportation to a hospital which is the pa-

tient's final destination.

The movement of patients between echelons and from 4E

to the CONUS is controlled by medical personnel called

regulators. Regulating is defined as "the selection of a

source of care tc which casualties are evacuated" (22:5).

Medical regulators match casualties with hospitals capable

of providing required medical care. Regulation within the'

combat zone (1E, 2E, 3E) is the responsibility of each

individual service. The regulation of casualties from the

combat zone to the COMMZ (3E to 4E) and from the COMMZ to

the CONUS is accomplished by the Armed Forces Medical Regu-

lating Office. One of the functions of a medical regulator

3



at the 4E level is to categorize patients based on type of

injury. The eight categories are:

1) General Medical;

2) Psychological;

3) Surgical Medical;

4) Orthopedic;

5) Spinal Injury;

6) Burn Injury;

7) Pediatrics;

8) OB/GYN.

"The regulator assigns a patient to a specific hospital

bed in the United States. The assignment is based on the

medical care required and hospital bed availability for that

patient's injury category. For example, a burn patient

would bn assigned to a hospital bed in the U.S. only if that

hospital can provide appropriate care for a burn patient.

The actual hospitals and number of available beds have been

identified by the National Disaster Medical System (NDMS).

The NDMS was developed to respond to any national disaster

to include a miliary contingency. As of July 1986, 73,000

beds in 950 hospitals have been identified (5:39). Depend-

ing on availability, patients are assigned to hospitals in

this order: military hospitals, Veterans Administration

hospitals and civiliari hospitals.

4



1.2 Problems With the Present System

Due to the lack of a dedicated intratheater aircraft in

the present system, the United States now has a sizable

strategic aeromedical evacuation shortfall. The U.S. de-

pends on C-141s for the movement of patients from the COMMZ

to CONUS, but the C-141 is also the primary aircraft used

for cargo airlift by the Armed Forces. In 1984, the short-

fall of C-141s was identified when the Military Airlift

Command (predecessor of AMC) c-ommissioned a Patient Distri-

bution-Redistribution Study (PDS). The PDS compared the

need for aeromedical airlift with the planned cargo flow in

a European scenario. The results showed an insufficient

number of C-141 airframes for the aeromedical evacuation

mission (10:8). Based on this study, the Office of the

Secretary of the Air Force authorized the creation of a new

segment of the Civil Reserve Air Fleet (CRAF) dedicated to

aeromedical evacuation.

1.3 Future System

The future aeromedical evacuation system is based

heavily on CRAF aircraft. Boeing 767s will replace the

C-141 for patient movement from the COMMZ to the CONUS.

This will allow the C-141 to be dedicated to its primary

5
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mission of cargo airlift. The Boeing 767s will transport

patients from the COMMZ to major hubs within the CONUS.

Within the CONUS, C-130s will redistribute the patients from

the major hubs to smaller airports closer to the patient's

assigned hospital bed. The C-130s will replace the C-9s so

that the C-9s may deploy to the combat zone and augment

theater evacuation forces. If the C-9s do not deploy, they

will augment the C-130s, performing patient redistribution

in the CONUS (5:31).

AMC is studying options to improve the efficiency of

the aeromedical evacuation system. One such option is to

bypass the major hubs and to deliver patients directly to

the airports nearest their assigned hospital. This option

would decrease the stateside redistribution of patients.

This approach would save time as the patients would get to

their assigned hospital more quickly than under the present

system. It would also eliminate much of the required han-

dling of the patients. Presently, a patient arriving in the

CONUS has to be unloaded at a major hub, reloaded on a

smaller aircraft, flown to another airfield, and unloaded a

final time. Flying direct would eliminate two steps in this

process and save time and resources.

The elimination of the major hubs is not a goal of this

research. Instead, this research concentrates on the medi-

cal regulator's task of assigning patients to an ultimate

6



destination and determining the routing of evacuation air-

craft. As such, these results are applicable to both the

current hub and spoke system and the proposed direct deliv-

ery system.

.1.4 Problem Statement

Air Mobility Command does not have a method to schedule

patients on individual aircraft which would fly direct from

the 4E COMMZ to U.S. airports. The purpose of this research

is to develop a methcd to schedule patients on Boeing 767s

and then route each aircraft to a single COITUS airport so

that the total time all patients spend waiting for evacua-

tion is minimized. The enroute time to be minimized for

each patient starts when medical personnel release that

patient for evacuation from the COMMZ and stops when that

patient is loaded on a Boeing 767 for transport to the

CONUS.

1.5 Scope and Assumptions

There may be multiple strategic evacuation points in

the COMMZ; however, in this research we will consider the

regulation problem at a single COMMZ evacuation point. The

problem addressed is the problem that each medical regulator

faces: who to put on what aircraft and where to send that

7



aircraft. The job of the regulator is vital to the smooth

flow of patients in the system. The ability to schedule

patients on aircraft and the routing of those aircraft in an

efficient manner is crucial if the concept of direct deliv-

ery is to be effectively implemented.

There are two versions of the Boeing 767 that are being

purchased for the CRAF: the 200ER and the 300ER. Each

version has the capability to'carry 111 litter patients.

However, patients of certain categories require medical,

equipment which utilizes more than one litter position.,

Examples of this type of equipment are ventilators, cardiac

monitors and stryker frames. Headquarters AMC estimates

that there will be a total of 11 litter positions taken up

by this medical equipment on each flight (15:2). Therefore,

each Boeing 767, regardless of type, is assumed to have a

capacity of 100 litter patients and the need for this

additional 'equipment will not be explicitly modeled. The

major difference between the 200ER and 300ER is the capacity

to carry ambulatory patients. Ambulatory patients do not

require a litter for the flight and will sit in a different

portion of the aircraft. The 200ER can only carry two

ambulatory patients while the 300ER can carry up to 75

ambulatory patients. AMC is planning on procuring a fleet

of 44 Boeing 767s having a mix of 60 percent 200ER and 40

* percent 300ER (15:1). Therefore, the assumed fleet size of

8



Boeing 767s used in this research is 26 200ERs and 18

300ERs.

The range of each type aircraft is assumed to be 4400

nautical miles (15:2). The average cruise speed is also

assumed to be identical: 460 nautical miles/hour. Based on

these two assumptions, the time required to fly to any

airport from the COMMZ evacuation point is assumed not to be

a factor. While the time of flight from the combat zone to

the various airports will be different, the differences in

travel time are assumed not to be large enough to be a

factor and will be ignored. The time frame minimized ends

when the patient is loaded on the aircraft. In this re-

search, the aircraft are assumed to fly from the COMMZ

evacuation point directly to an airport in the U.S. without

stopping enroute. This assumption holds except for a Far

Eastern scenario where a refueling stop in Hawaii is neces-

sary. Even with a refueling stop, the overall time required

is not affected since each aircraft would have to stop.

Another assumption is that only Boeing 767s will be

available for the aeromedical evacuation mission. While

there are scenarios in which both C-141s and Boeing 767s

would be used, C-141s are assumed not to be available for

the aeromedical evacuation mission. This is consistent with

AMC's present plan of evacuation.

9\



The percentage of patients ini each injury category is

assumed to match the percentages shown in historical data.

Data has been obtained from AMC which details the expected

percentages and is shown in Table 1. Also included in the

table is the average time a patient spends recovering in

U.S. hospitals.

Table 1

Percentage of injury by Category (15:4)

INJURY CATEGORY JPERCENTAGE__]AVG RECOVERY TINE

General Medical 12.6 16

Psychological 3.2 29

Surgical 44.1 24

Orthopedic 36.8 50

Burn 2.6 33

Spinal 0.7 38

Pediatric 0.0 N/A

OB/GYN 0.0 N/A

The-last two categories, pediatric and OB/GYN, will be--

disregarded since it is generally assumed that there will be

very few patients in these categories.

The time a patient is loaded on an aircraft is assumed

to be the same as the arrival time of the aircraft in the

theater of conflict. The loading of the aircraft will take

-* - time, but the time will be the same for every patient as the

aircraft cannot take of f until all patients are loaded and

10



is assumed to be approximately the same for all plane loads.

Therefore, the loading time does not effect the solution of

the problem.

Another major assumption is that the medical regulators

know the arrival times of the Boeing 767s in advance. The

medical regulators are assumed to know the number and loca-

tion of available hospital beds by category in the CONUS.

The beds have been identified by the National Disaster

Medical System plan discussed earlier. Medical regulators

need this information so they can make decisions on who to

put on each aircraft and where to send each aircraft.

The final assumption made is that there is a fixed

number of CONUS airports, identified by military and civil-

ian planners. 
77

1.6 Overriew

The remaining chapters detail the research effort.

Chapter 2 contains an overview of the mathematical program-

ming literature that relates to this problem. In Chapter 3,

the aeromedical evacuation problem is formulated as a mixed

integer program (MIP). A small problem is formulated and

solved and a discussion of the applicability of the model to

a larger problem is discussed. In Chapter 4, a heuristic

algorithm is presented and the development and performance



of the algorithm is described. Finally, conclusions and

recommendations are presented in Chapter S.

12



2. LZTERATURE REVIEW

The purpose of this chapter is to discuss the informa-

tion found in the literature which applies to this research

effort. In this chapter, information pertaining to aero-

medical evacuation, computational complexity, scheduling

theory, integer programming, network theory, and goal pro- -'

gramming will be reviewed.

2.1 Aeromedlcal Evacuation

Most of the literature specifically addressing aero-

medical evacuation deals with the policies of aeromedical

evacuation and the number of aircraft required to perform

the mission.

Four masters theses have been conducted at the Air

Force Institute of Technology concerning the war time aero-

medical evacuation of patients. Joseph Alfano and John

O'Neill performed a simulation which uses a European scenar-

io xo test the capability of CRAF airc aft. However, their

main focus was on the route structure for the CONUS redis-

tribution of patients. Their simulation used a hub and

spoke system, and they concluded that t ere was an insuffi-

cient number of C-9 aircraft. They ment oned the direct

delivery of patients only as an alternat ve to CRAF aircraft

routing (1:31). Michael Burns and W. Brand Carter conducted

13



parallel research efforts in 1990. Their main focus was

also on the CONUS redistribution of patients. Charles Wolfe

has conducted a simulation study to evaluate the entire

o-. 2aeromedical evacuation system using Boeing 767 aircraft and

a hub and spoke system. It is titled "The Use of Simulation

to Evaluate Strategic Aeromedical Evacuation Policy and

Planning"(21).

Headquarters AMC has discussed alternatives to the

present hub and spoke system, but has not conducted an in-

depth study on the matter. These alternatives were men-

tioned In a briefing to the AMC staff on alternatives to the

MD-80 aircraft (19:1.9).

Lt Col John D. Becker's Air War College Research paper,

"Aeromedical Evacuation: Do the Pieces Fit", provides an

excellent overview of the entire aeromedical evacuation

process. Becker first describes the theater aeromedical

evacuation system and what impact changing the time period

that the patient spends in the COMMZ has upon aeromedical

planning and policy. The theater evacuation policy deter-

mines this time period which influences the percentage of

patients that have to be evacuated to the CONUS.

Becker reiterates the C-141 shortfall identified in the

Patient Distribution-Redistribution Study commissioned by

MAC. He then discusses the proposed concept of a hub and

spoke operation using the Boeing 767. Lt Col Becker does

14
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not discuss the concept of alternatives to the hub and spoke

system.

2.,2 Complexity Theory

This research involves the routing of aircraft and the

scheduling of patients. According to Bodin, most routing

and scheduling problems fall into a category of problems

known as non-deterministic polynomial hard (NP-Hard) (6:76).

A review of the concepts of complexity theory is required to

understand approaches for solving problems in the class NP-

Hard.

The goals of complexity theory are to broadly classify

problems and algorithms according to the time needed to

solve them on computers (14:3). Decision problems come in

all degrees of difficulty, from ones that are solved readily

to ones that cannot be solved. The best solved problems are

classified Polynomial (P). The class P is the set of prob-

lems for which the number of basic computational steps

required to generate a solution is a polynomial function of

the size of the problem (14:8). Some of the problems that

fall in the class P are linear programming, minimum spanning

trees, and maximum flow in a network (14:8).

The class P is a subset of problems of the class NP. A

problem is in NP if one can verify the correctness of a

15



solution in polynomial time. The class NP contains all

class P probims.

Problems to which all members of NP polynomially reduce

are called NP-Hard. A problem reduces to a second problem

if, for every instance of the first problem, we can con-

struct an equivalent instance of the second problem. There-

fore, any algorithm that solves the second problem can be

converted to an algorithm for solving the first problem. A

problem polynomially reduces to the second problem if a

polynomial time algorithm for the second would imply a

polynomial time algorithm for the first (14:6). Problems

which are both in NP and NP-Hard are called NP-Complete.

Problems of this class are among the most difficult to

solve. If a problem is NP-Hard, it is as least as difficult

as any NP-Complete problem (13:138).

Generally, the effort required to solve NP-Hard prob-

lems increases explosively with problem size in the worst

case for all known solution algorithms (6:76). If a problem

has been proven to be NP-Hard, it does not preclude the

existence of polynomial time algorithms for specific cases

of the problem. When faced with an NP-Hard problem that

cannot be solved with a polynomial algorithm, a heuristic

procedure is often employed in an attempt to find a feasible

solution. Nemhauser and Woolsey define a heuristic algo-

rithm as an approximate algorithm designed to find good, but

16
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not necessarily optimal, solutions quickly (13:393). A heu-

ristic is considered effective if the solutions are consis-

tently close to optimal. A heuristic algorithm usually

exploits some aspect of the problem structure (either mathe-

matically or intuitively) to provide feasible and near opti-

mal solutions (6:76).

2.3 Scheduling Theozy

This research effort deals with scheduling patients on

individual aircraft to minimize their wait time. Many

aspects of scheduling theory, particularly priority dis-

patching rules apply directly to this aspect of the problem.

Kenneth Baker in his book, Sequencing and Scheduling, lists

and explains some of the most popular priority dispatching

rules. They are (2:197,217):

1) Shortest Processing Time (SPT): Select the
operation with the minimum processing time.

2) First Come First Serve (FCFS): Select the
operation that entered earliest.

3) Random (RANDOM): Select the operation at
random.

4) Most Work Remaining (MWKR): Select the operation
associated with the job having the most work
remaining to be processed.

5) Least Work Remaining (LWKa): Select the operation
associated with tha job having the least work
remaining to be processed.

6) Earliest Due Date (EDD): Select the operation with
the earliest due date.

17



No single dispatching rule has been found to be dominant in

all cases. The priority dispatching rule used depends on

the type problem and the measure of effectiveness being

optimized.

Analyzing the aeromedical evacuation problem reveals

that some of the priority dispatching rules need not be

considered. In Chapter 1, the assumption was made that the

work remaining (flying time of the aircraft) was identical

for all patients; therefore, MWKR and LWKR can be eliminated

from the list of dispatching rules to be considered. The

patients do not have a due date at a CONUS hospital, so EDD

may also be eliminated from the list. The three remaining

dispatching rules (SPT, FCFS, and RANDOM) are all possible

candidates for use as a priority dispatching rule for the

aeromedical evacuation problem.

2.4 Znteger Programming

Both routing and scheduling problems may also be formu-

late as integer programs in many, but not all, cases.

Integ r programming (IP) techniques are often applied to

solve routing and scheduling problems. The purpose of-this

sectic n is to discuss some of the solution techniques used

to solvn integer programs, including branch and bound, and

the Pivot and Complement heuristic.

18



Perhaps the method to solve integer programs that is

most widely used is the branch and bound method. The branch

and bound method finds the optimal solution by efficient ly

enumerating the points in a problem's feasible region

(20:488). The branch and bound methcd begins by solving the

linear programming (LP) relaxation to the IP. The value of

the objecti-*ve function of the LP relaxation provides an

upper bound when the goal is to maximize the objective

function. No integer solution. can exceed the upper bound.

If the solution to the LP relaxation contains all integeyi

values, then the solution to the LP is also the solutiorn to

the IP (20:489). If an integer solution is not found, the

next step is to partition the feasible region in an attcirnpt

to find the optimal solution of the IP. This is the branch-

ing portion of the procedure. An integer variable that is

not integer valued in the current solution of the relaxed LP

is picked to branch upon. Two or more subproblems are

created and constraints are then added to the problem to

eliminate the non-integer solution. The process is repeated

until all integer variables have integer values. The objec-

tive function value of this solution is a lower bound on the

optimal solution value for the problem. The next step is to

enumerate other possible combinations in an attempt to find

an improved integer solution. there are different tech-

niques which pick the branching variable and how to search

19
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each branch. Some of the techniques are depth first,

breadth first, and quick improvement. Normally, depth first

is used because feasible solutions satisfying the integer

requirements are generally found deeper in the branch and

bound tree and it is computationally easier when using the

dual simplex procedure (13:358).

Binary integer programs and mixed integer programs are

in the class NP-Hard (14:83). Therefore, as the problems

get larger, the computational time required to solve them

Z increases greatly. If the program gets too large, other

methods such as heuristic procedures should be used in order

to solve the problem. One heuristic is the Pivot and Com-

plement heuristic developed by Egon Balas and.Clarence

Martin.

7/ The Pivot and Complement heuristic is used for finding

approximate solutions to 0-1 programming problems. It uses

the fact that a 0-1 program is equivalent to the associated

linear program with the added requirement that all slack

variables, other than those in the upper bounding

constraints, be basic (3:86). The method starts by solving

the LP relaxation, and then searches in the vicinity of the

optimal solution to the LP relaxation for an integer feasi-

ble solution. It conducts this search by trying to force

any basic integer variable that is fractional out of the

basis. This is done by performing pivots. Non-basic inte-
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ger variables can be flipped from zero to one or from one to

zero. This is called complementing (7:227). Both one at a

time and two at a time complements are attempted. If a

feasible solution is found, additional complements are

performed in an attempt to improve it. The computational

ef fort involved in the Pivot and Complement heuristic proce-

dure is bounded by a polynomial in the number of constraints

and variables (3:89).

2.5 Network Theory

Many routing and scheduling problems can be formulated

as networks. The advantage to formulating problems as net-

works is that many network problems can be' solved in polyno-

mial time (6:75).

A network or graph is defined using two types of sets:

nodes and arcs. An arc consists of an ordered pair of

vertices (nodes) and represent a possible direction of

motion that may occur between vertices (20:389). Networks

can be represented pictorially by points and lines. The

points represent the nodes and the lines represent the arcs.

Minimum cost flow programming is the type of network

flow programming that is used in this research. In a mini-

mum cost flow program, the arcs of the network are described

by two parameters. The parameters are the cost of the arc

and the capacity of the arc. The cost of the arc reflects
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the expense for a unit of flow to travel along that arc.

The capacity of the arc is how much flow can travel through

the arc. The objective of minimum cost flow programming is

to flow the available supply through the network to satisfy

demand at minimal cost (4:420).

One of the attractive aspects of formulating the prob-

lem as a network is the structure of the constraint matrix.,

The constraint matrix is called a node-arc incidence matrix.

When formulated this way, the nodes of the problem are

represented by rows of the matrix. The columns of the

matrix represent the arcs of the problem. A matrix is

totally unimodular if the determinant of each square

submatrix is 0, 1, or -1 (13:540). If a matrix is totally

unimodular and the model parameters are integral, then the

solution to the LP relaxation will result in integer answers

(13:541). This aspect is advantageous because one does not

need to use an IP solution package to get integer answers.

-The network simplex algorithm is a specialization of

the simplex algorithm. It performs simplex operations

directly on the network itself. The overall efficiency with

this procedure is 200-300 times faster than the standard

simplex procedure. This means that large problems can be

solved with a reasonable amount of effort (4:419).

If a network structure is embedded in a linear program,

the problem is called a network with side constraints. In
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general these problems do not have a totally unimodular

matrix, and cannot be directly solved by LP procedures.

When the network part of the problem is large compared to

the non-network part, especially if the number of side

constraints is small, it is worthwhile to exploit this

structure in the solution process. The solution time will

be reduced when solved this way. However, there is no guar-

antee that the problem will be solved in polynomial time.

2.6 Goal Programming and Deviational Variables

Goal programming is a technique used to formulate and

solve linear programs where there are multiple objectives or

conflicting goals. Several aspects of goal programming are

used in this research, particularly the use of deviational

variables.

Generally, in goal programming, two deviational vari-

ables are introduced for each inequality constraint (repre-

senting a goal) in a linear program. There is a positive

variable representing the amount by which a goal is exceed-

ed, and a positive variable representing the amount by which

a goal is underachieved. The inequality constraints are

transformed into equality constraints by the addition of the

two deviational variables. In a sense, we are adding a

slack variable and an excess variable instead of just one or

the other. After the deviational variables are added to the
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constraints, a weight is given to the deviational variables

in the objective function. The weights given to the devia-

tional variables depend on the objective (or objectives)

being optimized and vary depending on the specifics of the

problem. Goal programming can be used in two different ways

to represent tradeoffs between different goals. According

to Winston, these are (20:189):

(1) Assign a penalty per unit deviation from each goal
and use linear programming to minimize the total
penalty incurred because of an unmet goal.

(2) Rank goals in priority from highest to lowest goal
and use pre-emptive goal programming and goal
programming simplex.

Pre-emptive goal programming and goal programming simplex

are techniques specifically designed to solve goal program-

ming problems and are not used in this research. Devia-

tional variables are used in this research as described in

(1) above.
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3. PROBLEM FORMULATION

The purpose of this chapter is to present the formula-

tion of the aeromedical evacuation problem as a mixed inte-

ger program (MIP). Following the model formulation, a small

problem is presented and its solution discussed. Finally,

there will be a discussion of the number of integer vari-

ables required to formulate a realistic problem and the need

for a heuristic procedure for assigning aircraft to airports

and assigning patients to aircraft.

3.1 Aeromedical Evacuation Model Formulation

In this problem, patients are assigned to aircraft and

aircraft are assigned to airports. In the MIP formulation,

all possible patient and aircraft assignments are repre-

sented by binary (0-1) variables. Assignments are con-

strained by both aircraft and airport capacities. Aircraft

capacity as defined in Chapter 1 is the capacity of a Boeing

767. Airport capacity is defined to be the number of avail-

able hospital beds by injury category located at hospitals

near that airport. The hospital capacity data used for this

study is included in Appendix A. The overall objective of

the model is to minimize the waiting time of the patients

without exceeding either capacity.
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Each p atient and each aircraft has certain characteris-

tics associated with them. The patients are classifiled

based on their type of injury. Each patient also has a

release time before which~ he cannot be transported by an

aircraft to the CONUS. Each aircraft has a capacity and an

arrival time when it will arrive in theater at the COMM4

evacuation field.

Each possible patient to aircraft assignment and each

aircraft to airport assignment has an associated binary

variable. If a variable representing a patient assignment

to a particular aircraft is set to 1, the patient has been

assigned to that particular aircraft. If not, the variable

is 0 and the patient is not assigned to that aircraft. The

same approach applies to aircraft to airport assignments.

Each of the variables have indices and sets associated

with them. index i identifies a particular patient in Set

Pk The Set Pk contains patients grouped by injury category

k. The set of all patients is P SO P= k Pk* Index j iden-

tifies a particular aircraft in Set J. The set J is com-

posed of all aircraft regardless of model. The set Ji-is a

subset of J. Set Ji contains all aircraft whose arrival

time is after patient i's release time. Index kc identifies

an injury category in Set K. The set K is composed of all

injury categories. Index h identifies a particular airport
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in Set H. The set H is composed of all airports. The

variables used in the formulation are as follows:

Xjj I f 1 patient i is assigned to aircraft j0 0otherwi se

I , 1 if aircraft j is assigned to airport h
Yjh 0 otherwise

sijh: Continuous variable with an upper bound of 1. Takes
on a value of I when patient i is assigned to
aircraft j which is assigned to airport h.

There is also a variable xiD which represents a patient.

assignment to the dummy aircraft, which is described below.

In this formulation, the planning horizon is two days.

A planning horizon is defined to be how far into the future A

one uses information in making the current decisions

(17:540). In setting tht planning horizon at two days, the

model accounts for patients who cannot be airlifted within

the planning horizon by assigning them to the dummy air-

craft. The model does not take into account any effect

patients not airlifted have upon the next day's process.

The following are parameters in the formulation:

Rel1 = Release time of patient i. This is the time
medical personnel state that the patient is stable

enough for evacuation to the United States.

Arr, - Arrival time of aircraft J at the COMMZ evacua-
tion point.

CAj - Capacity of aircraft j
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CHhk = Hospital bed capacity of airport h for category
k patients.

Model Formulation

The formulation is as follows:

Min ;SEP (A'rr - Re.Z,) x, + Mx wx)

SUBJECT TO:

xj+XjDl V+ ie (2)

xi-Yj 1  VjeJ, (3)

SXjj : CAj e7 (4)

z4,, s; S~ V heH, V keI (5)

Xjj + Y - Zj"j :9 1 V ieP, V jeJ7, V heH (6)

Xj•e {0,1}, yjhe {0,1}, 0 < Zijh S 1

for all ie P, for all Je ii, for all he H
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The objective function (Equation (1)) minimizes the

patients' wait time and penalizes assignments made to the

dummy aircraft. Wait time is defined to be the amount of

time between the time the patient is released for evacuation

by medical personnel and the time he is loaded on an air-

craft. The .actual wait time minimized by the model is the

time difference between the arrival of the patient's as-

signed aircraft and the release time of the patient. The

aircraft's arrival time and the time the patient is loaded

onto that aircraft are assumed to be identical. Aside from

the wait time, there is an additional term (M*XiD) in the

objective function. This term petnalizes any patient assign-

ment to the dummy aircraft. The pjnalty term (M) used is

greater than the planning horizon length and must be greater

than the greatest possible wait time of any patient.

The first set of constr aints (Equation (2)) state that

a patient must be assigned to exactly one aircraft.

The second set of constraints (Equation (3)) state that

each aircraft must be assigned to one airport. It is as-

sumed here that an aircraft will only _off load patients at

one airport. This assumption is preferred by AMC (12).

Equation (4) ensures that the number of patients as-

signed to each aircraft does not exceed the aircraft capaci-

ty. Tho dummy aircraft has an infinite capacity.
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The final two sets of constraints (Equations (5) and

(6)) ensure that the number of patients in an injury catego-

ry transported by all aircraft going to a common airport

does not exceed the available number of beds for that injury

category at that location. The constraints of Equation (6)

ensure that Ztih is one if patient i is assigned to aircraft

J that goes to airport h. These constraints were a modifi-

cation of the formulation outlined by Ravindran, Phillips,

and Solberg in their book Operations Research Principles and

Practice on page 190. The Zijh variable is in effect the

product of the xij and y1h variables (16:190).

3.2 Sample Problem Fomulation and Solution.

The purpose of developing this sample problem was to

formulate and solve a small, but realistic problem. Analyz-

ing a small problem's formulation and solution helps to

determine whether the solution methodology can be applied to

larger, more realistic problems. The sample aeromedical

evacuation problem was solved using LINDO software on a

personal computer, and its formulation and solution is

listed in Appendix B.

This sample problem addresses the scheduling of ten

patients on two aircraft traveling to two different air-

ports. The patients have two possible injury categories and

different release times (given in days). There are two

30

, i f 7./.•,,

!•, •,, , .,, , V.
, . ., ! , ; "- ., . " ., . , . '



aircraft with different capacities and different arrival

times. The hospitals have different capacities for each of

the two categories. The following tables show the specifics

of the problem: -

Table 2

Sample Problem Aircraft)

Aicrf Arrival Time J Capacity ]

Table 3

Sample Problem Patients

Patient jCategory Release Wait Time
- _______ Time J B F

1A 0.0 4.0 6.0

2 B 1.0 3.0 5.0

3 A 2.0 2.0 4.0

4 A 3.-0 1.0 3.0

5 B 3.5 0.5 2.5

6 A 4.0 0.0 2.0

7 B 4.5 N/A 1.5

BB 5.0 N/A 1.0

9 A 5.0 N/A 1.0

10A 5.5 N/A 0.
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Table 4

Sample Problem Airports

Airport Capacity capacity
Category A Category B

G 3E1
H 3

The problem was designed so that all the patients could

not be evacuated by the fleet of aircraft. Also, the capac-

ity of the airports was designed so that one airport could

not accept all of the patients.

The solution of this problem is shown in Table 5:

Table 5

Sample Problem Solution

AIRCRAFT ASSIGNED PATIENTS AIRPORT ASSIGNMENT

E 1,2,4,5,6 H

F 3,8,9,10 G

The results indicate that neither the airport capacities r

the aircraft capacities were exceeded. The only patient n t

assigned to an aircraft was #7, and this was due to the

aircraft capacity. For the nine evacuated patients, the

total wait time was 15 days.
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3.3 Applicability to Larger Problems.

Following the solution of the small aeromedical evacua-

tion problem, an analysis was done to determine if the

methodology could be applied to solve larger problems.

The primary factor affecting the solution of the aero-

medical evacuation problem, and most integer programming

problems, is the number of integer decision variables. In

the general formulation of the problem, the maximum number \

of xlj variables is obtained by multiplying the number of

patients by the number of aircraft. It should be noted that

this is an upper bound on the number of xij variables as not

every patient-aircraft combination is possible (a patient

having a release time after the arrival time of an aircraft

cannot be assigned to that aircraft). In the example prob- /

lem with 10 patients and two aircraft, there are a total of

20 possible xij variables. However, since there were four

patients whose release times were after the arrival time of

the first aircraft, only 16 xij variables were necessary to

model the sample problem. However, in the worst case sce-

nario, the number of xi1 variables is the number of patients

times the number of aircraft. The number of Yjh variables

is the number of aircraft multiplied by the number of air-

ports.

The total number of binary variables required to solve

the problem is the number of xij variables plus the number
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Of YJh variables. The ZiJh variables in this formulation are

continuous and do not represent a significant computational

burden to the problem.

Casualty data has been obtained from Headquarters AMC

detailing the total number of causalities expected during

wartime.' There were three scenarios for which AMC had

obtained casualty estimates. The worst case scenario was

chosen in order to determine the maximum size the problem

formulation could attain. The data obtained gives only the

total number of expected causalities, and does not detail

injury by category. Historical percentages of injuries by

category are listed in Chapter 1 anid do not influence the

size of the problem.

In the selected scenario, the worst case generates

approximately 2000 casualties per day. If there are two

CO!.flZ evacuation points in this scenario (18), this reduces

the number of patients per evacuation point to 1000. It is

assumed that four aircraft will be unavailable due to main-

tenance, thereby reducing the available fleet to 40 air-

craft. It is also assumed that one-half of the incoming

Boeing 767s (20 aircraft) would arrive at a single evacua-

tion point every two days. Therefore, approximately 10

aircraft per day arrive at the CO!'ilZ evacuation hospital.

Based on this data, an estimate of the number of

binary variables can be calculated for a given day. The
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number of xij variables is 1000 patients times 10 aircraft

for a total of 10,000 variables per day. The number of Yjh

variables is significantly less than the number of xij

variables. There are at most 15 airports in the model.

Therefore the maxLium number of Yjh variables is L50 p#r !y

or 10 aircraft times 15 airports. The total number of

binary variables is the sum of the number of xij and Yjh

variables and is 10,150 per day.

Problems of this size cannot be solved easily. Nemhau-

ser and Woolsey state in their book, Integer and Combinator-

ial Optimization, that problems having several thousand

integer variables have been solved optimally (13:16). In

general, IP programs are classified as NP-Hard, and although

some large IP problems have been solved optimally by taking

advantage of special structure in the problem, an approach

to take advantage of any special structure within this

problem was not found. The worst case problem size is too

large to expect to solve quickly in the dynamic environment

which would exist in wartime; therefore, a heuristic ap-

proach has been developed and is discussed in Chapter 4.
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4. HEURISTIC DEVELOPMENT AND TESTING

The purpose of this chapter is to describe a heuristic

algorithm developed for the aeromedical evacuation problem.

Following the description of the heuristic, the computation-

al testing of the procedure will be discussed.

There are two distinct subproblems of the aeromedical

evacuation problem: assigning aircraft to airports and

assigning patients to aircraft. The problem was divided

into two subproblems and these are solved in an iterative

procedure. The first subproblem is that of assigning air-

craft to airports and will be referred to as the aircraft-

airport assignment problem. These results (aircraft to

airport assignments) are then used as input to the second

subproblem: assigning patients to aircraft. The second

subproblem will be referred to as the patient-aircraft

assignment problem. These subproblems are solved repeatedly

until a suitable termination rule is satisfied. A flow

chart of the program is shown on the next page.

4.1 Aircraft-Alzport Assignment Problem.

The first subproblem is the assignment of aircraft to

airports. Given an assignment of patients to aircraft
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Patient-AircraftAssignment

No

Update
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Figure 1: Flow Cart of Aeromedical Evacuation Problem -
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(either through an initialization procedure or from the

output of the patient-aircraft assignment problem, both

described later), the task is to assign aircraft to air-

ports. Note that a feasible assignment based on hospital

capacities may not be possible. Therefore, the objective of

this subproblem is to minimize this infeasibility. This is

accomplished through a goal programming type approach.

In the analysis of the aeromedical evacuation problem

presented in Chapter 3, it was determined that the number of

binary variables required for the aircraft-airport assign-

ment problem was small enough to permit solution by integer

programming. The purpose of the aircraft-airport assignment

problem is to select the best subset of airports based on

the distribution of patients released for evacuation to the

CONUS. In this subproblem, the wait time of the patients is

not a factor in the decision on where to assign the air-

craft. For this subproblem we are only interested in mini-

mizing the amount that hospital capacities are exceeded by

this assignment. A goal programming type approach using

deviational variables is used to ensure this.

The indexes, variables, and parameters used previously

remain the same for the aircraft-airport assignment problem.

Two new variables (deviational variables) and one new param-

eter are introduced in the formulation of the aircraft-
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airport assignment problem. The new variables are as

follows:

SPLUShk: Surplus capacity at airport h for patients
in category k. This variable is the number of
category k patients under the capacity of
airport h.

EXCShk: Excess number of category k patients traveling
to airport h. This variable is the number of
category k patients over the capacity of airport
h.

The Yjh variable previously defined is:

I ( if aircraft j is assigned to airport h
YJIL 0 otherwise

The new parameter is as follows:

Aik: Number of category k patients assigned to
aircraft J.

The previously defined parameter is:

CHhk: Hospital bed capacity of airport h for category
k patients.

The IP formulation is as follows:

kMIN ;EXCSI* (7)

SUBJECT TO:

*Aj Yj÷ SPLUSk - CC k V hCN, Vkez (6)
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Yp" VjJ (9)

YJh 6 {0,1}, SPLUShk, EXCShk 2 0

Objective FUnction. The objective function minimizes the

number of patients assigned to an airport in which the

capacity of that airport by patient category has been ex-

ceeded. For instance, if 12 general medical category pa-

tients are assigned to aircraft j travelling to airport h

where the capacity is 10 general medical patients, the value

of EXCShk would be two. However, if the capacity of that

airport were 14, EXCShk would be zero and SPLUShk would hayv

a value of two.

Constraint Sets. The first constraint set (Equation (8))

represents the bulk of the integer program. It applies a

goal programming approach in which there are variables for

falling short of the goal and variables for exceeding the

goal. The goal in the aircraft-airport assignment problem

is to minimize the number of patients assigned to an airport

where a hospital bed is not available for that patient.

Minimizingthe sum of the variables EXCS hk models this goal.

The AJk parameter is the number of category k patients

assigned to aircraft J. Initially, the loading of patients
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is FCFS and the distribution is listed in Table 6 in Section

4.3. In subsequent iterations of the algorithm, the Ak

parameters are updated based on the solution of the patient-

aircraft assignment problem. The Yjh variable is the same

as in Chapter 3 and represents the assignment of aircraft j

to airport h when Yjh = 1. The SPLUShk variable represents

the unused capacity at airport h for category k patients.

The right-hand-side value (CHhk) of the equality constraints

is the number of category k patients that can be treated at

hospital facilities served by airport h.

The second constraint set (Equation (9)) ensures that

an aircraft can only be assigned to one airport. This

models the assumption that each aircraft offloads it pa-

tients at a single airport.

The values of the Y~h variables (assignment of aircraft

to airports) are passed to tha patient-aircraft assignment

problem.

The IP was formulated using the General Algebraic

Modeling System (GAMS) and solved using the GAMS/ZOOM MIP

solver on a VAX mainframe computer. The GAMS code is listed

in Appendix C.

4.2 Patient-Aircraft Asslgnment Problem.

The second subproblem solved is the patient-aircraft

assignment problem. Given a set of aircraft-airport assign-
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ments, the goal is to assign patients to aircraft so that

patient wait time is minimized. It would be preferable to

load all aircraft to capacity, although this may not be

possible due to airport capacities.

The problem is formulated similar to the formulation in

Chapter 3. The major difference is that the YJh variables

are now fixed parameters and the zijh variables are no

longer needed. The formulation is:

Min ((Azz- Rol j) xj + M*xj.0)()

R 6

SUBJECT TO:

7XIJ +XJD32 'Yiep (2)

XJj ÷xj V 1eP (4)

YJXt s cHj VheHVkeK (10)

xij e {0,1}, xiD e (0,1}, for every i, for every j

Equations (1), (2), and (4) are identical to the constraints

in Chapter 3. Equation (10) is an altered version of the
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constraints in Chapter 3. They were altered by replacing

the zijh variable with the Yjh*Xij term. The Zijh variable

was a product of the binary variables xjj and Yjh, but since

the aircraft-airport assignments (Yjh) are fixed parameters,

the need for the Zijh variable no longer exists.'

The vast majority of the binary variables used in the

formulation of the aeromedical evacuation problem presented

above and in Chapter 3 were in the assignment of patients to

aircraft. Therefore, a iore efficient method needs to be'.

used in order to reduce the computational time required to

solve this subproblem. The method used is network flow

programming. A minimum cost flow network was designed to

minimize the waiting time of the patients. The network is

illustrated in Figure 2. The network is a smaller version

of the actual one used in the research. The network in

Figure 2 uses only three categories and two aircraft. The

network starts with a source node (S) which generates the

number of patients released on a daily basis. There are

three arcs emanating from the source node. Each arc travels .

to a node which rep-'esents the injury category that the

patient is in and the day the patient was generated (GM1,

P1, Sl). The 1 in the label GM1 represents patients gener-

ated on day 1. Once again, historical percentages were used

in the generation of patients. The cost along the arcs from

the source node (labeled 1 in Figure 2) is zero and the
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*A,

AC1 .,

S~...

P1 PA-

Figure 2: Network Flow Diagram

capacity is the number of patients generated for that, cate-

gory. From each injury category, an arc travels to a sec-

ondary injury category node (GMA, PA, SA). These arcs

(labeled 2 in Figure 2) have a capacity of the number of

patients in that injury category and a cost reflecting the

number 'of days each patient has been waiting. If a patient

was released on the day that the aircraft is scheduled to

arrive, the cost along the arc would be zero. If the pa-

tient was generated the day before and left unassigned from

the pre ous day, the cost would be one day. From each of

the secd injury category nodes, arcs travel to each air-
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craft including a dumm,:' aircraft (AC1, DAC). These arcs

(labeled 3 in Figure 2) represent the assignment of patients

to aircraft. The arcs' capacities are the injury category

capacity of the airport to which the aircraft has been as-

signed. The cost on thc arc is the patient's wait time.

The additional wait time along this arc is the time from

midnight on the current day to the arrival time of the

individual aircraft. The wait time of the dummy aircraft

(DAC) was set at a level much greater than the wait time of

all the patients, thu&, discouraging the assignme~nt of pa-

tients to the* dummy aircraft. The capacity of the arcs

travelling to the dummy aircraft is unlimited. From each of

the aircraft nodes (including the dummy aircraft node), an

arc (labeled 4 in Figure 2) travels to an airpor-'.. node (APi,

DAP). The capacities of these arcs (other than those inci-

dent to the dummy aircraft) is the capacity of a Boeing 767:

100 patients. The cost of the arc is zero. A single arc

(labeled 5 in Figure 2) travels from each airport node to a

sink node (T) whose demand is the number o~f released pa-

tients in the system.

A modification to the network is required when more

than one aircraft has been assignied to the same airport.

The modification was needed because an airport's capacity

might be exceeded by sending multiple aircraft to an airport

under the present network configuration. For example,
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consider a case where two aircraft have been assigned to the

same airport whose GM capacity is 30. The example is illus-

trated in the following figure.

/

GMA API

Cp*o API

4 fo M i:dients :-Ntt

Figure 3: Network with Side Constraints Example

There are arcs travelling from the second injury category

nodes to two aircraft nodes. The flow along each arc is 20

GM patients. The capacity of each of these arcs would be

the capacity of the airport which is 30 GM patients. Then,

there would be 40 GM patients arriving at the airport whose

capacity is 30. This problem is solved by incorporating

side constraints. The side constraints ensure the total arc

flow out of the injury category nodes travelling to aircraft
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nodes (assigned to the same airport) must be less than or

equal to the capacity of the airport by injury category.

The network was formulated and solved using the SAS/OR

package on a VAX mainframe computer. The SAS code is listed

in Appendix D. The results of the minimum cost flow program

were then used as input to the aircraft-airport assignment

problem.

4.3 Aeromedical Evacuation Heuristic Algorithm.

The two assignment problems were linked in one algo-

rithm. In order to begin the algorithm there must be an

initial assignment of patients to aircraft. Since the

overall goal-of the heuristic algorithm is to minimize the

patients' waiting time, the obvious choice for the initial

loading is to evacuate the patient as soon as possible after

he/she is released. Therefore, the dispatching rule used is Li

first come first serve (FCFS). The aircraft-airport assign-

ment problem is solved first to take advantage of this easy

initialization scheme. The patient-aircraft assignment

problem is then solved using the generated aircraft to

airport assignments. If necessary, the process is repeated

until ona of the termination criteria is met.

The algorithm is as follows:
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ARRONEDICAL EVACUATION HEURISTIC ALGORITH3(

Stop 0. Initialization. Assign patients to aircraft on a
first come first serve basis based on release
times. Initialize iteration counter to 0.

Stop 1. Aircraft-Airport Assignment.. Given patient-
aircraft assignments, assign aircraft to airports.
Pass aircraft-airport assignments to Step 2. If
assignments are repeated between iterations,
proceed to Step 3. Increment iteration coun ter
by 1.

Step 2. Patient-Aircraft Assignment. Given a set of
aircraft-airport assignments, solve the minimum
cost flow problem minimizing patient wait time.
Proceed to Step 3. -- i

Step 3. Check for termination. Proceed to Step 5 if:
1) Aircraft loaded to capacity.
2) Aircraft-airport assignments remained unchanged

between iterations.
3) User prescribed iteration limit exceeded.
If not proceed to Step 4.

Step 4. Update. Update A~ to the aircraft loads
determined by SteV 2. Proceed to Step 1.

step s. Stop. A feasible assignment of aircraft to
airports and patients to aircraft has been found.
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The first step of the algorithm (Step 0) is the ini-

tialization step. All aircraft are loaded with patients

being assigned to aircraft using a FCFS dispatching rule.

The parameter AJk representing thepatient-aircraft assign-

ments, is passed to the aircraft-airport assignment problem.

Step 1 is the aircraft-airport assignment problem.

This problem is solved and the results (aircraft-airport

assignments) are passed to the patient-aircraft assignment

problem. Even if the objective function value is zero, the

aircraft-airport assignments still need to be passed to the

patient-aircraft assignment problem. This is necessary to

obtain the wait time of the patients. If the aircraft-

airport assignments are repeated between iterations, the

algorithm proceeds to Step 3 and terminates. Finally, the

iteration counter is incremented by 1 before proceeding to

Step 2.

Step 2 is the patient-aircraft assignment problem.

There are two results from the patient-airoraft assignment

problem. The results are the new patient-aircraft assign-

ments (AJk) and the total patient wait time.

The results are passed to Step 3. At Step 3, the re-

sults of Step 1 and Step 2 are used to determine if the

algorithm can be terminated. If the results indicate that

all aircraft (excluding the dummy aircraft) are loaded to

capacity, the algorithm will proceed to Step 5 and termi-
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nate. If all aircraft are loaded to capacity, there are no.

airport capacities that are violated. This is due to the

design of the network. The capacities are not violated

because the network will not allow any flow greater than the-

airport capacity. Instead, the network will assign patients

to the dummy aircraft. Also, the patient wait time is \ /

minimized. This is the criteria that is desirable to termi-

nate from,.because the solution is optimal for the selected

aircraft-airport assignments and the distribution of pa-

tients. The algorithm also proceeds to Step 5 and termi-

nates if a prescribed iteration limit is exceeded or if the

aircraft-airport assignments are unchanged from previous

iterations. since the aeromedical evacuation problem needs

to be solved frequently and quickly, an iteration limit must

be set. If the aircraft-airport assignments are repeated

and the algorithm is not terminated, the algorithm would be

in an infinite loop. -"

If any aircraft is not loaded to capacity, the algo-

rithm proceeds to Step 4. At Step 4 the patient-aircraft

assignments (new.Ajk) are updated and they are passed to the

aircraft-airport assignment problem. Step 4 readjusts the

aircraft loads for input into the aircraft-airport assign-

ment problem. This step essentially reloads each aircraft -*

so that the total patient wait time is minimized for the

current aircraft-airport assignments. The algorithm then
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proceeds to Step 1 with the new values for the Aik parame-

ter, and the aircraft-airport assignment problem is re-

optimized based on the new distribution of aircraft loads.

At Step 1, the goal is to pick a new set of airports to

assign the aircraft to. The algorithm proceeds as described

above until one of the termination criteria is met.

4.4 Algorithm Testing.

The algorithm was initially tested using thiree separate

data sets which represented realistic patient loads based on

historical percentages. A subset of 13 airports was select-

ed which would exercise the algorithm.. The remaining air-

ports were not considered by the aizcraft-airport assignment

problem. The subset of airports is listed in Appendix E.

The subset was used to keep the number of binary variables

at a manageable level (approximately 130) and to keep compu-

tational time reasonable. Several of the airports selected

did not have a capacity to handle certain categories of

patients, most notably the burn and spinal categories. The

number of patients by category for FCFS is assumed to follow

the historical percentages listed previously in Chapter 1.

Initially, all of the aircraft will be loaded with the same -

number and same type of patients. Since the assumed air-

craft capacity is 100 for each type of aircraft, the patient

load per aircraft is as follows:
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- .---Tablei

Inta PaintLa

Pa ientiCaleor Natemter

General Medical 13

Psychological 3

surgical 44

Orthopedic 36

Burn 3

spinal 1

Since the FCFS load would have some of these category pa-

tients on board each aircraft, there would be a non-zero

objective function value in the aircraft-airport assignment

in the first iteration. At Step 2, the patient-aircraft

assignment problem flow would then reassign patients based

on the capacities of the airports selected. If necessary,

other iterations of the algorithm would be performed until

all patients were assigned to an available bed. The initial

number of patients for the three data sets are listed in the

following table:



Table 7

Patient Data got Distribution

Category set__ I ___ Set_2Set_

Gen Medical 130 130 143

Psychological 30 30 33

Surgical 440 440 484

Orthopedic 360 360 396

Burn 30 20 33

Spinal 10 20 11

The first test of the algorithm was performed using

data set 1. There were 1000 patients which were all gener-

ated at time 0. There were 10 aircraft whose arrival times

were spaced out evenly at 0.1 day intervals throughout the

day. The penalty for an assignment of a patient to the

dummy aircraft in the patient-aircraft assignment probl3m

was set to 100. This value is much greater than the plan-

ning horizon (1 in this data set). The results of the

aircraft-airport assignment problem for data set 1 are

listed in Appendix F. The results are summarized in the

following table:
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Table 8

Testing of Data Set 1

Iter Capacities Violated Patients Assigned Wait
at Step I to Dummy AC (Step2) Time

1 19 4 846.4

2 4 1 549.1

3 1 0 450

The results indicate that, on th• first iteration, 19 pa-

tients have violated the hospita: capacity constraints. The

airport assignments were input tc the patient-aircraft

assignment and the patients were reassigned to minimize

their wait times. This resulted in a new assignment of

patients to aircraft which was different than the assign-

ments in the initialization step. In the patient-aircraft

assignment problem, the numtir o0 patients violating hospi-

tal capacity constraints was reduced from 19 to 4 as indi-

cated by the assignment of four burn patients to the dummy

aircraft. The total wait time was 846.4 days of which 400

days were due to the patients assigned to the dummy air-

craft. The first nine aircraft were loaded to capacity and

the average wait time for the assigned patients was 0.448

days per patient. The aircraft loading was changed dramati-

cally and is listed in Appendix F. The new aircraft loading

was input to the aircraft-airport assignment problem. The
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ýresults indicate that the objective value remained at four,

but a different assignment of aircraft to a irports was made..

Inputting the results into the patient-aircraft assignment

problem reduced the number of patients violating hospital

capacity zonstraints to one. The total wait time was 549.1

days, of which 100 days were due to a single patient as-

signed to the dummy aircraft. The first nine aircraft were

.once again loaded to capacity and the average wait time was

0-.449 days per assigned patient. The reason the average

wait time went up is that three more patients w~ere assigned

to the aircraft with the latest arrival time. Once again

the aircraft loads were changed and a third aircraft-airport

assignment problem was solved., The objective value remained

at one, but a new assignment of aircraft to airport assign-

ments was made. These new assignments were input into the

patient-airport assignment problem and the result was that

all patients were assigned to Boeing 767 aircraft. The wait

time was 450 days, for an average of 0.45 days per patient.

-The 0.45 days per patient is consistent for the data set,

since the average arrival time for the aircraft was 0.45

days.

Three complete iterations were performed by the algo-

rithm and at each step the number of patients violating

hospital capacity constraints either was reduced or stayed

the same.
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The second data set required only one complete itera-

tion of the algorithm. There were 1000 patients in data set

2, but in a different distribution of injury types than in

data set 1. The arrival of aircraft remained the same as

data set 1. In the initial aircraft-airport assignment

problem, 18 patients violat~d'airport capacity constraints.

However, when the assignments of aircraft to airports were

input into the patient-aircraft assignment problem, the air-

craft loads were readjusted and no patient was assigned to

the dummy aircraft. Once again the total wait time was 450

days, for an average per patient of 0.45 days. The results

of the iteration are listed in Appendix G. The result s of

data Sets 2 and 3 are summarized in the following table.

The DAC Asmts column is the assignment of patients to the

dummy aircraft.

Table 9

Violated Capacities for Data Sets 2 and 3

Data Set Step 1I Step 2 _DXC Asats_ Wait j
2 is 18 ___0__ 0 450 N

[ 3 27 1 0 100 10,463] j
The third data set i.nvolved generating and scheduling

patients over a two day period. There were 100 patients

remaining from the previous day, which simulates that there

was an insufficient number of aircraft to evacuate all the
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patients on the previous day. It was assumed that the

distribution of patients remaining overnight followed the

historical distribution. The aircraft schedule remains

unchanged from the two previous test cases. On the second

day, 1000 patients were generated and the distribution of

patients was identical to that of data set 1. The purpose

of designing this data set is to determine if the algorithm

would transport patients in the order they are generated.

In other words, patients generated on the first day should

be evacuated before the patients generated on the second

day.

In the initialization step, each of the 10 aircraft was

assigned 110 patients. Exceeding the capacity of each

aircraft is acceptable in the airport-aircraft assignment

subproblem. The important factor is obtaining optimal air-

craft-airport assignments. Exceeding the capacity of the

aircraft is not important. The number and distribution of

patients is the information that the aircraft-airport as-

signment problem needs in order to optimally solve the

problem.

The results of the iteration are listed in Appendix H.

The objective function value indicated that 27 patients had

violated airport capacity constraints. However, since the

total capacity of the 10 aircraft is 1000, in the patient-

aircraft assignment problem there will be at least 100
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patients that will be assigned to the dummy aircraft. The

airport assignments were passed to the patient-aircraft

.assignment problem and the patient-aircraft problem was

solved. The results indicated that 100 patients were as-

signed to the dummy aircraft. This indicated that the 10

actual Boeing 767 aircraft were filled to capacity. Of the

100 patients assigned to the dummy aircraft, 81 patients

were from the orthopedic category and 19 were from the burn

category. All of these 100 patients were generated on the

second day. The total wait time was 10,463 days, of which

10,000 was from the patients assigned to the dummy aircraft.

The average wait time for the patients not assigned to the

dummy aircraft was 0.463 days. The reascni that the average

wait time went up to 0.463 days from 0.45 days is that the

wait time for all of the 100 patients from the first day-is

greater than one day. The significance of this iteration is

that patients would be airlifted as soon as an aircraft was

available, and patients would not be left for an extended

period of time waiting to be airlifted..

4.5 Analysis of Results.Evu\

The results of the testing of the Aeromedical Eau

tion Heuristic Algorithm indicated that the method develo ed

can be used by medical regulators to determine who goes or

what aircraft and where to send the aircraft. This method
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could be used whether the present hub and spoke system is

maintained or if an alternative syste•: such as direct deliv-

ery is implemented. The method.can reduce the amount of

stateside redistributic4 of patient-, saving valuable re-

sources. There are several considerations that merit dis-

cussion.

While the method did work within several iterations on

the tested data sets, it does not guarantee an optimal

solution will be obtained in all cases. Obviously, if there

are more patients than there are available hospital beds,

aeromedical evacuation of all patients would be impossible.

It is possible that the solution to the aircraft-airport

assignment problem will be a set of airports in which there

will be some patients violating capacity constraints. The

patient-aircraft assignment program may readjust the air-

craft loads and pass those along for input into the air-

craft-airport assignment problem. It is possible that the

aircraft-airport assignment program may then pick the same

subset of airports as the previous iteration. The algorithm

guarantees that the solution between steps of the algorithm

will not get worse. However, the algorithm does not guaran-

tee the next solution will get better. Also, there does not

appear to be a bound on how close to optimality the current

solution is.
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There are several options that the regulator can choose

from if this situation occurs. The first is that they may*

pick a new group of airports (different from the initial*1

set) for the aircraft-airport assignment program to consider

and start the process over again. The second option is that

the regulator may choose to not fully load an aircraft. The

third and final option is for the regulator to reassign the

aircraft to an airport with redistribution capability.

Another concern is the computational time required when

executing the algorithm. Since the first subproblem is an

IP, the computational time required to solve the problem

cannot be ignored. The computational times for the IP using

the GAMS/ZOOH solver varied from a few seconds to three

hours. The problem had.130 binary variables, 297 continuous

variables and 90 constrcints. The GAMS/ZOOM solver uses a

combination Linear Program, Pivot and Complement heuristic,

and Branch and Bound procedure. It first solves a relaxed

LP to get a lower bound. It then uses the Pivot and Comple-

ment. heuristic to come up with an integer answer. If the

heuristic fails to come up with the optimal solution,

GAMS/ZOOM will then use Branch and Bound (7:226-227). In

problems that took a long time to solve, the solver was

searching nodes of the branch and bound tree to reach the

optimal answer. Doing branch and bound generally takes far
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longer than the initial LP and the Pivot and Complement

heuristic combined (7:227).

The third concern is the amount of time required for

inputting the data. The implementation of this algorithm

used two completely different systems to solve problems

(GAMS and SAS). There is no direct link between. the two

systems at AFIT. Therefore, much of the data between itera-

tions had to be manually entered. For the aircraft-airport

assignment problem using GAMS, the Aik parameter had to be

changed between iterations (See Appendix C: TABLE A(J,K) )

In the patient-aircraft assignment problem using SAS, an

entire column of the SAS data set must be manually changed*

(See Appendix D: _capac_ column). The time required for

these inputs is not excessive, but their entry would waste

Ivaluable time in an actual wartime environment.

Another possible concern is the side constraints in the

patient-aircraft assignment network problem. A pure network

problem can be solved using a polynomial time algorithm,

while solving a problem with side constraints cannot be. It

is theoretically possible that solving the network with side

constraints might take an excessive length of time. Howev-

er, no problems of this nature were encountered in any of

the SAS runs with side constraints. The computational time

required on all runs was under 30 seconds. A pure network
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was designed which would delete the need for side

constraints. The network is illustrated in Figure 4.

/

S4 / 4
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Figure 4: Modified Network

Initially, the network is identical to the network used

in the research. There are three arcs emanating from the

source (S) which travel to injury category nodes (Figure 4:

GM1, P1, $1). The cost and capacities are the same as the

original network used in the research. However, this is

where the similarity ends. From each injury category node

there are arcs travelling to injury category nodes for each

airport (GMA1, PAl, SAl). There are six injury category

nodes for each airport. The capacity of the arcs (labeled 2

in Figure 4) is the injury category capacity of the airport
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to which the aircratt (or multiple aircraft) has been as-

signed. The cost is the wait time of the patients in that

category. This is the modification to the network that was

made so that the side constraints can be deleted. From

these nodes, there are arcs travelling to aircraft nodes

(Figure 4: ACI, AC2). The cost along these arcs is zero,

and the capacity is the airport's capacity for that injury7

category. From each aircraft node, a single arc travels to

an airport node (Figure 4: APi). The cost along this arc is

.zero and. the capacity is the capacity of a Boeing 767; 100.

From the airport node a single arc travels to the sink node.

The cost along the arc is zero and the capacity is the total

capacity of the airport (all categories combined). The size

of the network might be a concern. The network as formu-

lated this way is approximately 4 times larger than the

present network. The number of nodes increases from 58 in

the nc-twork that was used in the research to 319 in the

proposed network and the number of arcs increases from 245

to 831. It is larger because each aircraft requires six

injury category nodes, whereas the smaller network requires

six injury category nodes for all aircraft regardless of

destination.

63



5. CONCLUSIONS AND RECCMENDATIONS

The purpose of this chapter is to summarize the re-

search effort, to discuss the major conclusions, and to

prc-,ide recommendations for further research.

5.1 Stmmary and Conclusions

This thesis effort examined the aeromedical evacuation

process and provided a method of scheduling patients on and

routing CRAF Boeing 767 aircraft. Presently, the Boeing 767

travel from COMMZ evacuation airports to major hubs in the

CONUS. At the major hubs, the patients are unloaded off the

Boeing 767 and loaded onto C-130 aircraft which then trans-

port the patients from the hubs to the airport nearest the

patient's assigned hospital bed. This research has examined

and presented a method to schedule patients on specific,

Boeing 767 aircraft and then route the aircraft to a single

CONUS airport. This method of scheduling and routing can be

implemented within the present system or it can be used in

alternative systems such as a direct delivery system.

The aeromedical evacuation problem that was studied had

the objective of minimizing patient wait time in the theater

of conflict. By minimizing the wait time, the patients

would benefit from the improved medical care that is avail-

able at the CONUS hospital. The problem was modeled as a
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mixed integer program (MIP). The problem had two primary

assignment variables: assigning aircraft to airports and

assigning patients to aircraft. The problem was constrained

by two capacities. Aircraft capacity is the capacity of a

Boeing 767. Airport capacity was defined to be the number

of patients in each injury category that could be served by

the hospitals served by that airport.

A small problem was formulated, solved, and an analysis

was performed on the structure of the problem. The analysis

revealed that the number of binary variables required to

formulate a realistic problem was too large to be solved

efficiently. Since the aeromedical evacuation needs to be

solved quickly and frequently, a heuristic procedure was

developed.

The heuristic procedure divided the problem into two

subproblems. The first step was to initially load aircraft

with patients on a first come first serve basis. The first

subproblem that was solved was the assignment of aircraft to

airports. This assignment problem was solved by integer

programming using techniques borrowed from goal programming.

Deviational variables 1ere used to minimize the number of

patients travelling to ýn airport whose surrounding hospi-

tals could not support hem. The results of the IP were a

set of aircraft-airport ssignments. These assignments and
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their associated capacities were then passed to the second

subproblem.

The second subproblem was the patient to aircraft

assignment problem. In the original problem formulation,

the vast majority of the binary variables used to formulate

the problem were in this assignment. Network flow program-

ming was used in order be more efficient in the solution

process. If all of the aircraft were loaded to capacity,

meaning that the airport capacity constraints were not *
violated, the algorithm was terminated. The algorithmn was

terminated because optimal assignments of both subproblems

have been reached. If not, the new patient-aircraft assign-

ments were passed to the aircraft-airport assignment

subproblem. The algorithm proceeded in this manner untilK

one of the termination criteria was met.

The algorithm was tested using three different but

realistic data sets. The results indicate that this method

of scheduling patients and routing aircraft was feasible.

This method could be used in the present hub and spoke

system and in alternative systems. In the testing of the

first data set, three iterations of the algorithm were per-

formed before no airport capacities were violated. The

remaining two data sets required only one iteration of the

algorithm.
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5.2 Recommendations for Further Study

In conducting the research, five areas were uncovered

upon which further study and research could be performed.

The first area is to put the algorithm in a dynamic

environment. The development and testing of the algorithm

was done in a static environment. By placing the algorithm

into a dynamic test environment, one would be able to deter-

mine the effects that the routing and scheduling algorithm

has upon patient flow, aircraft flow, and hospital capaci-

ties. one possibility is to incorporate the method into

Charles Wolfe's SIHSCRIPT simulation model developed in his

AFIT thesis titled "The Use of Simulation to Evaluate Stra-

tegic Aeromedical Evacuation Policy and Planning" (21).

The second recommendation is to test the impact of the

length of the planning horizon upon this method of patient

scheduling and aircraft routing. In the model used in this

research, the number and type of patients left unassigned

had no effect on the next days decision process. The plan-

ning horizon's length may have an effect on what type and

how many patients are not assigned to an aircraft. The

planning horizoi's length may also have an effect on the

penalty applied to the dummy aircraft in both the small

aeromedical evacuation problem and to the patient-aircraft

network assignment problem.
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The third recommendation is to study and implement the

pure network formulation of the patient-aircraft assignment

problem. The solution time to the pioblem as formulated

using side constraints could prove to be excessive. Would

the pure network, which is four times larger than the pres-

ent network, solve in a shorter time than the present net-

work with side constraints?

The fourth recommendation is to investigate more effi-

cient methods to solve the aircraft-airport assignment prob-

lem. The solution time of the present IP formulation can be

excessive given the dynamic nature of the wartime aero-

medical evacuation process. One possible method would be to

formulate the aircraft-airport assignment as a network

problem which would reduce the computational time required

to solve the problem.

The fifth and final recommendation is to integrate the

algorithm's two main subproblems into one programming lan-

guage. This would decrease the manual inputs required. As

a goal, the algorithm should be totally automated so the

problem could be solved quickly and efficiently. The pres-

ent algorithm uses two different languages (GAMS and SAS),

which are incompatible. Such an implementati,.n would be

necessary for this approach to be acceptable as an efficient

planning tool.
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Appendix A: Hospital Capacities

AIRPORT GEN MED PYSCH SURG ORTh SPIN BURN

LOS ANGELES 4704 1343 3327 1102 567 473
TUSCOM 169 66 82 35 9 8
LUKE 371 110 472 47 21 5

SAN FRAN 897 421 1481 358 117 56
FT LEWIS 473 180 450 264 81 77
PORTLAND 213 64 327 81 15 12

BOSTON 3593 303 2612 368 97 55
NHAMPTON 233 6 132 66 4 5
ALBANY 180 104 181 103 1 1

CHARLOTTE 527 344 370 102 41 14
FTJACKSON 420 110 242 149 24 27
FT GORDON 274 212 169 150 29 14
FT BRAGG 1621 533 1632 714 142 135
CHARLESTON 212 78 277 62 3 12

DENVER 603 190 732 437 26 3
HILL 171 72 186 32 20 17
WICHITA 52 30 46 42 0 1
ALBQ 118 27 123 36 0 5
FT BLISS 603 115 539 389 27 3

PHIL 4209 1286 3367. 784 228 102
SYRACUSE 219 31 47 16 4 38
BUFFALO 813 128 671 202 25 17
PInTSBURG 1366 110 946 134 30 10
NORFOLK 1201 516 1061 434 22 46
WASH DC 1604 357 1403 711 170 23

HOUSTON 1211 246 1205 402 5 26
NEW ORLEANS 2323 635 1271 325 79 23
LITTLE ROCK 80 10 83 86 0 0
SHREVEPORT 229 101 106 32 0 4
OK CITY 227 52 422 120 1 0
CARSWELL 683 147 502 174 52 0
SAN ANTONIO 1150 291 428 138 9 35
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Appendix A: Hospital Capacities

AIRPORT GEN MED PYSCH SURG ORTH SPIN BURN

ATLANTA 706 84 467 309 3 35
BIRMINGHAM 514 71 487 56 12 9
ORLANDO 875 154 702 201 57 50
JACKSONVILLE 456 193 393 355 54 57
JACKSON 336 166 315 23 18 8
MILLINGTON 427 160 248 59 25 4
KNOXVILLE 206 57 209 64 9 1
NASHVILLE 468 199 490 161 13 5

CHICAGO 2204 568 2651 547 88 95
CLEVELAND 344 197 287 103 41 33
MINNEAPOLIS 88 149 338 73 27 11
DES MOINES 65 27 84 12 4 3
INDIANAPOLIS 250 77 84 33 8 3
SCOTT 665 130 1216 276 0 0
LEAVENWORTH 222 76 382 84 24 6
LEXINGTON 261 92 395 192 5 1
ALLEN PARK 592 154 514 130 29 26
OFFUT 583 104 126 178 14 16
WRIGHT-PAT' 537 155 880 318 120 96
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Appendix B: Aeromedical Problem Formulation and Solution

FORMULATION:

MIN 4 XIE + 6 X1F + 3 X2E + 5 X2F + 2 X3E + 4 X3F +
X4E + 3 X4F + 0.5 X5E + 2.5 X5F + 2 X6F +

1.5 X7F + X8F + X9F + 0.5 X1OF + 10 XlD + 10 X2D +
10 X3D + 10 X4D + 10 X5D + 10 X6D + 10 X7D +
10 X8D+ 10 X9D + 10 X1OD

SUBJECT TO:

2) XlE + XIF + XID = 1
3) X2E + X2F + X2D = 1
4) X3E + X3F + X3D = 1
5) X4E + X4F + X4D= 1
6) X5E + X5F + X5D 1
7) X6F + X6D + X6E= 1
8) X7F + X7D = 1
9) XSF + XSD = 1

10) X9F + X9D = 1
11) X1OF + X10D = 1
12) YEG + YEH = 1
13) YFG + YFH = 1
14) XIE + X2E + X3E + X4E + X5E + X6E <= 5
15) XIF + X2F + X3F + X4F + X5F + X6F+

X7F + XSF + X9F + X1OF <= 4
16) ZIEG + Z3EG + Z4EG + Z6EG + Z1FG +

Z3FG + Z4FG + Z6FG + Z9FG + ZIOFG <= 3
17) Z2EG + Z5EG + Z2FG + Z5FG + Z7FG + Z8FG <=
18) Z1EH + Z3EH + Z4EH + Z6EH + ZIFH +

Z3FH + Z4FH + Z6FH + Z9FH + Z1OFH <= 3
19) Z2EH + Z5EH + Z2FH + Z5FH + Z7FH + Z8FH <= 4
20) X1E + YEG - ZIEG <= 1
21) X2E + YEG - Z2EG <= 1
22) X3E +YEG - Z3EG <= 1
23) X4E + YEG - Z4EG <= 1
24) X5E + YEG - Z5EG <= 1
25) YEG + X6E - Z6EG <= 1
26) XlE + YEH - ZIEH <= 1
27) X2E + YEH - Z2EH <= 1
28) X3E + YEH - Z3EH <= 1
29) X4E + YEH - Z4EH <= 1
30) X5E + YEH - Z5EH <= 1
31) YEH + X6E - Z6EH <= 1
32) XIF + YFG - Z1FG <= 1
33) X2F + YFG - Z2FG <= 1
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34) X3F + YFG - Z3FG <= 1
35) X4F + YFG - Z4FG <= 1
36) X5F + YFG - Z5FG <= 1
37) X6F + YFG - Z6FG <= 1
38) X7F + YFG - Z7FG <= 1
39) X8F + YFG - Z8FG <= 1
40) X9F + YFG - Z9FG <= 1
41) X10F + YFG - Z1OFG <=
42) XlF + YFH -ZFH <= 1
43) X2F + YFH - Z2FH <= 1
44) X3F + YFH- Z3FH <= 1
45) X4F + YFH - .4FH <= 1
46) X5F + YFH - Z5FH <= 1
47) X6F + YFH - Z6FH <= 1
48) X7F + YFH - Z7FH <= 1
49) X8F + YFH - ZSFH<- 1
50) X9F + YFH - ZqFH <= 1
51) X10F + YFH - Z1OFH <=

NED
INTEGER XlE
INTEGER XIF
INTEGER X2E
INTEGER X2F
INTEGER X3E
INTEGER X3F
INTEGER X4E
INTEGER X4F
INTEGER X5E
INTEGER X5F
INTEGER X6E
INTEGER X6F
INTEGER X7F
INTEGER X8F
INTEGER X9F
INTEGER XIOFINTEGER XID

INTEGER X2D
INTEGER X3D
INTEGER X4D
INTEGER X5D
INTEGER X6D
INTEGER X7D V
INTEGER X8D
INTEGER X9D
INTEGER X1OD
INTEGER YEG
INTEGER YEH
INTEGER YFG
INTEGER YFH
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LINDO SOLUTION:

OBJECTIVE FUNCTION VALUE

1) 25.000000

VARIABLE VALUE REDUCED COST
XIE 1.000000 4.000000
X1F .000000 6.000000
X2E 1.000000 3.000000
X2F .000000 5.000000
X3E .000000 2.000000
X3F 1.000000 4.000000
X4E 1.000000 1.000000
X4F .000000 3.000000
X5E 1.000000 .500000
X5F .000000 2.500000
X6E 1.000000 .000000
X6F .000000 2.000000
X7F .000000 1.500000
X8F 1.000000 1.000000
X9F 1.000000 1.000000

X1OF 1.000000 .500000
XID .000000 10.000000
X2D .000000 10.000000
X3D .000000 10.000000
X4D .000000 10.000000
X5D .000000 10.000000
X6D .000000 In.000000
X7D 1.000000 lu.000000
X8D .000000 10.000000
X9D .000000 10.000000

X1OD .000000 10.000000
YEG .000000 .000000
YEH 1.000000 .000000
YFG 1.000000 .000000
YFH .000000 .000000

ZIEG .000000 .000000
Z3EG .000000 .000000
Z4EG .000000 .000000
Z6EG .000000 .000000
Z1FG .000000 .000000
Z3FG 1.000000 .000000
Z4FG .000000 .000000
Z6FG .000000 .000000
Z9FG 1.000000 .000000
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Z1OFG 1.000000 .000000 ..

Z2EG .000000 .000000 -• -

Z5EG .000000 .000000 /
Z2FG .000000 .000000 .
ZSFG .000000 .000000
Z7FG .000000 .000000
Z4FG 1.000000 .000000
Z6EH 1.000000 .000000.
ZIFH .000000 .000000
Z3EH .000000 .000000
Z4EH 1.000000 .000000
Zl6H .000000 .000000
Z0FH .000000 .000000Z4FH .06000.000000

Z2FH .000000 .000000Z9FH .000000 .0060000
Z9OFH .000000 .000000
Z1OFH 1.000000 .000000
Z5EH 1.000000 .000000
Z2FH .000000 .000000 A
Z5FH .000000 .000000 ý?.,
Z7FH .000000 .000000
Z8FH .000000 .000000

NO. ITERATIONS- 128 "'
BRANCHES- 1 DETERM.- 1.OOOE 0
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Appendix C: GAMS Integer Program

SETS
J aircraft /A1,A2,A3,A4,A5,A6,A7,A8,A9,A1O/

H hubs /CIND, CLEX, CSCO,
AKNX,
HLRF, HOKC, HSHR, HCRS,
CHCHS,
DABQ, DWIT,
BALB, BNRH/

K categories /GM, PYS, SUR, ORTH, SP, BUR/;

TABLE CAPAC(H,K) capacities of hubs by categories

GM PYS SUR ORTH SPBUR
CIND 250 77 84 33 8 3

CLEX 261 92 395 192' 3 1
CSCO 665 130 1216 276 0 0
AKNX 206 57 209 64 9 1
HLRF 80 10 83 86 0 0
HOKC 227 52 422 120 1 0
HSHR 229 101 106 32 0 4
HCRS 683 147 502 174 52 0
CHCHS 212 78 277 62 3 12
DABQ 118 27 123 36 0 5
DWIT 52 30 46 42 0 1
BALB 180 104 181 103 1 1
BNRH 233 6 132 66 4 5

V

TABLE A(J,K) load per aircraft of cztegory k patients ,

GM PYS SUR ORTH SPBUR
Al 13 3 44 36 1 3
A2 13 3 44 36 1 3 .
A3 13 3 44 36 1 3
A4 13 3 44 36 1 3
A5 13 3 44 36 1 3
A6 13 3 44 36 1 3
A7 13 3 44 36 1 3
A8 13 3 44 36 1 3
A9 13 3 44 36 1 3 ..•;/
A1O 13 3 44 36 1 3
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SCALARS NOA number of aircraft in model /10/
SRH right hand side value /1/;

VARIABLES
Y(J,H) assignment of plane j to hub h
SPLUS(H,K) surplus variable
EXCS(H,K) excess variable
OPT optimal solution value;

POSITIVE VARIABLES SPLUS, EXCS;

BINARY VARIABLE Y;

EQUATIONS
ASSN objective function
EHP(H,K) hospital capacity equations
EMNA maximum number of aircraft
EHTA(J) one hub to an aircraft;

ASSN .. OPT =E= SUM((H,K),EXCS(H,K));
EHP(H,K) .. SUM(J,A(J,K)*Y(J,H)) + SPLUS(H,K) - EXCS(H,K)

-E= CAPAC(H,K);
EMNA .. SUM((J,H),Y(J,H)) =E= NOA;
EHTA(J) .. SUM(H,Y(J,H)) =E= SRH;

MODEL HUBASSIGN /ALL/;

OPTION OPTCR = 0.1;
OPTION LIMROW = 0;
OPTION LIMCOL = 0;
OPTION ITERLIM = 900000;
OPTION RESLIM = 10000;
OPTION WORK = 100000;

SOLVE HUBASSIGN USING HIP MINIMIZING OPT;

/.
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Appendix D: SAS Network Code

title 'Patients to Aircraft: Hubs Already Selected';

title3 'Nodes for Network';
data noded;
input -node $ _sd;
cards;
S 1100
T -1100

title3 'Arc Data';
data arcd;

input _from_ $ -to- $ _cost- _capac_ _10- name_ $;
cards;

S GMO 0 13 . SGMO
S P0 0 3 . SPO
S So 0 44 . SSo
S 00 0 36 . So0
S BO 0 3 . SBO
S SPO 0 1 . SSPO

S GH1 0 130 . SGIlI
S P1 0 30 .SPI
S Sl 0 440 •SS1
S 01 0 360 •SO1
S B1 0 30 •SBl
S SPI 0 10 •SSPl

GMO All 1 250 . GOA1
GMO A12 1.1 212 . GOA2
GMO A13 1.2 118 . GOA3
GMO A14 1.3 261 . GOA4
GMO A15 1.4 683 . GOA5
GNO A16 1.5 206 . GOA6
GMO A17 1.6 665 . GOA7
GMO A18 1.7 233 . GOA8
GMO A19 1.8 683 . GOA9
GMO A10 1.9 180 . GOAO
GMO DAC 101 5000 . GODAC

GM1 All 0 250 . GlAl
GM1 A12 0.1 212 . GlA2
GM1 A13 0.2 118 . G1A3
GMI A14 0.3 161 . GlA4
GMI A15 0.4 683 . GlA5
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GH1 A16 0.5 206 . GlA6
GMl Al7 0.6 665 . GIA7
GMl AI8 0.7 233 . G1A8
GMI A19 0.8 683 . GlA9
GMi A10 0.9 180 . G1AO
GM1 DAC 100 5000 * GIDAC

P0 All 0 77 * POAl
P0 A12 0.1 78 * POA2
P0 A13 0.2 27 * POA3
P0 A14 0.3 92 * POA4
P0 A15 0.4 147 . POA5
P0 A16 0.5 57 o POA6
P0 Al7 0.6 130 . POA7
P0 A18 0.7 6 • POA8
P0 A19 0.8 147 o POA9
P0 A10 0.9 104 . POAO
P0 DAC 100 5000 . PODAC

P1 All 0 77 • PlAl
P1 A12 0.1 78 o P1A2
P1 A13 0.2 27 • PlA3
P1 A14 0.3 92 o P1A4
P1 A15 0.4 147 o PlA5
P1 A16 0.5 57 . PlA6
P1 Al7 0.6 130 o PlA7
P1 AI8 0.7 6 • PIA8
P1 A19 0.8 147 o PlA9
P1 AI0 0.9 104 . PIAO
P1 DAC 100 5000 . PIDAC -

SO All 0 84 • SOAl
SO A12 0.1 277 . SOA2
SO A13 0.2 123 . SOA3
SO A14 0.3 395 o SOA4
SO A15 0.4 502 o SOA5 ....
SO A16 0.5 209 . SOA6
SO Al7 0.6 1216 . SOA7 <§1
SO A18 0.7 132 . S0A8
SO A19 0.8 502 . SOA9
SO A10 0.9 181 . SOAO
SO DAC 100 5000 o SODAC

Sl All 0 84 0 SlAl
Sl A12 0.1 277 o S1A2
Sl A13 0.2 123 . SIA3
Si A14 0.3 395 . SlA4
Sl A15 0.4 502 . SlA5
S1 A16 0.5 209 o SIA6
S1 Al7 0.6 1216 o SlA7
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Sl A18 0.7 132 . SlA8
Si A19 0.8 502 . $1A9
Si A10 0.9 181 . SlAO
S1 DAC 100 5000 . SIDAC

00 All 0 33 • OOAl
00 A12 0.1 62 * OOA2
00 A13 0.2 36 • 0OA3
00 A14 0.3 192 . 0OA4
00 A15 0.4 174 . 0OA5
00 A16 0.5 64 * 0OA6
00 A17 0.6 276 . 0OA7
00 A18 0.7 66 . 0OA8
00 A19 0.8 174 . OOA9
00 A10 0.9 103 . OOAO
00 DAC 100 5000 . OODAC

01 All 0 32 • OlAl
01 A12 0.1 62 • 01A2
01 A13 0.2 36 • 01A3
01 A14 0.3 192 . 01A4
01 A15 0.4 174 . O1AS
01 A16 0.5 64 * 01A6
01 Al7 0.6 276 . OIA7
01 A18 0.7 66 * 01A8
01 A19 0.8 174 • 01A9
01 A10 0.9 103 * OIAO
01 DAC 100 5000 . OIDAC

BO All 0.0 3 • BOAl
BO A12 0.1 12 • BOA2
BO A13 0.2 5 • BOA3
BO A14 0.3 1 • BOA4
BO A15 0.4 0 • BOA5
BO A16 0.5 1 . BOA6
BO Al7 0.6 0 • BOA7
BO AI8 0.7 5 * BOA8
BO A19 0.8 0 • BOA9
BO A1O 0.9 1 • BOAO
BO DAC 100 5000 . BODAC

Bl All 0.0 3 • BlAl
B1 A12 0.1 12 * BlA2
Bl A13 0.2 5 • BIA3
Bl A14 0.3 1 • BIA4
B1 A15 0.4 0 * BIA5
B1 A16 0.5 1 . BlA6
B1 Al7 0.6 0 • BlA7
Bl AlS 0.7 5 . BiAS
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Bl A19 0.8 0 . BIA9
B1 A10 0.9 1 . BIAO
B1 DAC 100 5000 . BlDAC

SPO All 0.0 8 0 SPOAl
SPO A12 0.1 3 0 SPOA2
SPO A13 0.2 0 . SPOA3
SPO A14 0.3 5 . SPOA4
SP0 A15 0.4 52 . SPOA5
SPO A16 0.5 9 . SPOA6
SPO A17 0.6 0 * SPOA7
SPO A18 0.7 4 . SPOA8
SPO A19 0.8 52 . SPOA9
SPO A10 0.9 1 . SPOA0
SPO DAC 100 5000 . SPODAC

SP1 All 0.0 8 splAl
SP1 A12 0.1 3 * SP1A2
SP1 A13 0.2 0 . SP1A3
SP1 A14 0.3 5 . SP1A4
SP1 A15 0.4 52 . SPlA5
SP1 A16 0.5 9 * SPlA6
SP1 Al? 0.6 0 . SPlA?
SP1 AlS 0.7 4 0 SPIA8
SP1 A19 0.8 52 0 SPIA9
SP1 A10 0.9 1 0 SPlAb
SP1 DAC 100 5000 . SPIDAC

All H1 0 100 • AlIHl
A12 H2 0 100 .AMH2

A13 H3 0 100 .AMH3

A14 H4 0 100 A4H4
A15 H5 0 100 • A5H5
A16 H6 0 100 • A6H6
A17 H7 0 100 . A7H7
AlS H8 0 100 . A8H8
A19 H9 0 100 . A9H9
A10 H10 0 100 . AlOH10
DAC DHB 0 1000 . DACDHB

Hl T 0 100 .H1T
H2 T 0 100 . H2T
H3 T 0 100 . H3T
H4 T 0 100 . H4T
H5 T 0 100 . H5T
H6 T 0 100 . H6T
H7 T 0 100 . H7T
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H8 T 0 100 . H8T
H9 T 0 100 . H9T
H10 T 0 100 . H10T
DHB T 0 1000 . DHBT

title3 'Side Constraints';
data condi;

input GOAS GOA9 G1A5 G1A9 POA5 POA9 P1A5 P1A9 SOA5 SOA9 SlA5
SlA9 00A5 00A9 O1A5 01A9 BOA5 BOA9 BiA5 B1A9 SPOA5 SPOA9
SPlA5 SP1A9 -type_ $ _rhs_;
cards;
1 1 1 1 * .*.*LE 683
0 0 0 1 0 . * * . * * * * LE 147

* ** *. * . 1 1 1 1 .o LE 502
* * * . *o .o o 1 1 1 *0*. * . LE 174

* * * * . * * * * * * * 1 1 1 1 * .o o LE 0
* * o* *0 o . *0 *0 * * 1 1 1 1 LE 52

proc netf low
nodedata=noded
arcdata=arcd
condata=condl
conout=solution;

print problem;
proc print data=soiution;
sum fcost_
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Appendix Z: Data Set Information

The following airports were used as the population of air-
ports for the aircraft-airport assignment problem to consid-
or in all three data sets:

1. Northhampton 8. Oklahoma City
2. Albany 9. Carswell AFB
3. Charleston 10. Knoxville
4. Wichita 11. Indianapolis
5. Albuquerque 12. Scott AFB
6. Little Rock ~ 13. Lexington
7. Shreveport

The following aircraft were generated at the following times
on the present day for the first two data sets. The air-
craft for the third data set are identical to the first two,
but generation starts at time 1.0 (time 0 on the second
day).

AircraftTire Generated

1 0.0
2 0.1
3 0.2
4 0.3
5 0.4
6 0.5
7 0.6
8 0.7
9 0.8

10 0.9

The following patients were ge~nerated for the numbered data
sets.
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Data Set 1

Patient Category Number Time Generated

General Medical 130 0.0
Psychological 30 0.0
Surgical 440 0.0
Orthopedic 360 0.0
Burn 30 0.0
Spinal 10 0.0

Data Set 2

Patient Category Number Time Generated

General Medical 130 0.0
Psychological 30 0.0
Surgical 440 0.0
Orthopedic 360 0.0
Burn 20 0.0
Spinal 20 0.0

Data Set 3

Patient.Cat~egory Number Time Generated

General Medical 13 0.0
Psychological 3 0.0
Surgical 44 0.0
Orthopedic 36 0.0
Burn 3 0.0
Spinal 1 0.0

General Medical 130 1.0
Psychological 30 1.0
Surgical 440 1.0
Orthopedic 360 1.0
Burn 30 1.0
Spinal 10 1.0
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Appendix P Data Set 1: Iteration 1

GAMS/ZOOM output
Objective function value: 19

Aircraft Airport Assignment

1 Carswell

2 Northampton

3 Charleston

4 Albuquerque

5 Wichita

6 Oklahoma City

7 Knoxville

8 Lexington

9 Albany

10 Lexington

SAS Output: New Aircraft Loads (AJk)
Wait Time: 846.4 days

Aircraft GX PYS OUR ORTI BpI BURN

1 59 0 0 36 0 5

2 38 30 0 31 0 1

3 11 0 46 42 0 1

4 0 0 0 90 10 0

5 0 0 100 0 0 0

6 0 0 99 0 0 1

7 0 0 95 0 0 5

8 0 0 100 0 0 0

9 0 0 0 99 0 1

10 22 0 0 62 04 12

Dummy 0 0 0 4
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Iteration 2

GAMS/ZOOM output
Objective function value: 4

Aircraft I Airport Assignment

1 Northampton

2 Albany

3 Wichita

4 Carswell

5 Carswell

6 Shreveport

7 Albuquerque

8 Albany

9 Lexington

10 Charleston

SAS Output: New Aircraft Loads (AJk)
Wait Time: 549.1 days

Aircraft GM PYS SUR ORTH SPI BURN

1 24 0 4 66 1 5

2 70 30 0 0 0 0

3 11 0 46 42 0 1

4 0 0 0 91 9 0

5 0 0 100 0 0 0

6 0 0 96 0 0 4

7 0 0 95 0 0 5

8 0 0 99 0 0 1

9 0 0 0 99 0 1

10 25 0 0 62 0 12

Dummy 0 0 0 0 0 1
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Iteration 3

GAMS/ZOOM output
Objective function value: 1

Aircraft Airport Assignment

1 Northampton

2 Lexington

3 Wichita

4 Carswell

5 Northampton

6 Shreveport

7 Albuquerque

8 Knoxville

9 Albany

10 Charleston

SAS Output: New Aircraft Loads (Aik)

Wait Time: 450 days

Aircraft GM PYS SOU ORTE SPI BURN

1 17 6 11 66 0 0

2 0 0 72 27 0 1

3 52 5 0 42 0 1

4 0 19 71 0 10 0

5 0 0 95 0 0 5

6 0 0 96 0 0 4

7 0 0 95 0 0 5

8 35 0 0 64 0 1

9 0 0 0 99 0 1

10 26 0 0 62 0 12

Dummy 0 0 0 0 0 0
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Appendix G Data Set 2: Iteration 1

GAMS/ZOOM output
Objective function value: 1R

Aircraft ( Airport Assignmeat

1 Northampton

2 Carswell

3 Knoxville

4 Northampton

5 Lexington

6 Carswell

7 Charleston

8 Lexington

9 Albuquerque

10 Carswell

SAS Output: New Aircraft Loads (AJk)
Wait Time: 450 days.

Aircraft GM P¥8 OUR ORTH BPI BURN

1 22 f 0 12 66 0 0

2 43 30 0 16 11 0

3 2 0 46 42 9 1

4 0 0 95 0 0 5

5 0 0 99 0 0 1

6 0 0 100 0 0 0

7 0 0 88 0 0 12

8 0 0 0 100 0 0

9 63 0 0 36 0 1

10 0 0 0 100 0 0

Dummy 0 0 0 0 0 0
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Appendix R Data Set 3: Iteration 1

GAMS/ZOOM output
Objective function value: 27

Aircraft Airp•r• .signment

1 Indianapolis

2 ,narleston

3 Albuquerque

4 Lexington

5 Carswell

.6 Knoxville

7 Scott

8 Northhampton

9 Carswell

10 Albany

SAS Output: New Aircraft Loads (AJk)

Wait Time: 10,463 days.

Aircraft am PYO SUR ORTH SPI BURN

1 79 0 0 16 0 5

2 0 33 66 0 0 1

3 51 0 44 0 0 5

4 0 0 100 0 0 0

5 0 0 63 36 1 0

6 13 0 11 64 10 2

7 0 0 100 0 0 0

8 0 0 100 0 0 0

9 0 0 0 100 0 0

10 0 0 0 99 0 1

Dummy 0 0 0 81 0 19
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